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LIGHT SCATTERING IN CRYSTALS WITH SURFACE CORRECTIONS

Melvin 1 ax
City College of CUNY* New York, 10031 and
Bell Laboratories, Murray Hill, New Jersey 07974
and
Donald F. Nelson
Bell Laboratories, Murray Hill, New Jersey 07974

A summary is given of techniques and results for calculating light scatter-
ing in anisotropic crystals vahd for arbutrary directions of the incident beam,
the scattered beam and the crysial surface normal relative (o the crystal axes.
A dyadic Green's function that disuinguishes ray and propagation directions
leads to a scattering efficiency mside the crystal that involves the Gaussian cur-
vature of the surface of wave normals. After taking account of the solid angle
expansion, and the source volume demagnification at the crystal surface, a
scattering formula is given suitable for comparison with experiments done out-
side the crystal. Application is made to Brillouin and Raman scattering.

1. INTRODUCTION

The availability of laser sources has led to a great upsurge in light scattering experiments
in recent years. Many experiments have been performed on crystals of low symmetry and
{arge optical anisotropy while a few experiments "2 have used light scatiering 10 measure quan-
titatively the nonlinear polarization causing the scattering. Such numerical measurements re-
quire a theory which (1) accounts correctly for the noncollinearity of the ray vector and the
wavevector that results from the optical anisotropy and (2) relates the nonlinear polarization to
measuring instrument parameters which are outside the crystal. Previous theories? have often
mishandled the first requirement and have always ignored the second.

The purpose of our study of the theory of light scatiering, of which we present a sum-
mary here, has been to remedy these deficiencies of previous theories. To remedy the first
deficiency resulting from optical anisotropy we have based our theory on a Green's function
solution of the electric field wave equation.*® This technique is appropriate because the
scatlering volume is typically very small compared to the size of the crystal under study when
laser sources are used. Because even the crystal surface is in the far field, an asymptotic
evaluation of the Green's fynction inside the crystal is adequate. Our first - and incorrect -
evaluation? used a stationary pha.é'c integration over two variables followed by a residue in-
tegration over the third variable. The appealing but nevertheless incorrect result was what
would have been calculated for an isotropic medium with the subsequent replacement of the
isotropic refractive index by the one appropriate to the correct ray direction in the crystal.
This replacement procedure has been used by others ® Our second - and correct - evaluation 5.
follows that of Kogelnik® and Kogelnik and Motz? who used it on a magnetoionic media prob-
lem. Their work was bascd on a stationary phase technique of Lighthill !9 in which the residue
integration was performed first and the statonary phase metnod was applied second. The
correct asymplotically evaluated Green's function in an anisotropic crystal>’ is presented in
Sec. 1. This procedure takes proper account of the noncollinearity of the ray and propagation
directions in an anisotropic crystal. In Sec. Il the Green's function solution is used to find an
expression for the scattered power inside the crystal. The expression differs in several ways
from the best previous treatment of Brillouin scatiering in anisotropic media by Motulevich.'!
One difference is the appearance of the Gaussian curvature K of the surface w (k) =w in our
formula for the scattered power inside the crystal. Motulevich's treatment was not based on a
Green's function approach but rather on Ginzburg's'? Hamiltonian approach using an aniso-
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tropic Coulomb gauge

In Secs. IV and V we present the remedy to the second deficiency of previous theories,
that is, to relating the scattered power inside the crystal to quantities characterizing the detector
outside the crystal. In Sec. IV the solid angle inside the crystal is related to the expanded solid
angle outside the crystal  The formulas presented are completely general in applying to any
orientation of the crystal axes, the scattered ray, and the surface normal. In Sec. V the length
of the scattering volume along the iaident beam is related to the corresponding demagnified
length as seen outside the crystal by a field stop of the detectuon optics. The demagnification
formula is also completely general i applying to any orientation of the crystal axes, the scat-
tered rayv, and the surface normal  The width of the scattering volume (the unscattered beam)
when laser sources are used s typically much less than the width of the field stop of the detec-
ton optics and so does not enter the formuias exphicitly. The solid angle expansion and source
volume demagnification expressions are then combined with the scattered power formula of
Sec. 1 o produce in Sec. VI o scattered power formula applying to measurements made owr-
side the crystal

[he scattered power formulas of Secs. 1 and VII are formulated in terms of an arbitrary
mechanism of hght scattering. In Sec. VI the power formula is specialized to two important
mechanisms, Brillouin scattering' 'Y (from acoustic phonons) and Raman scallcring"‘ (from
optic phonons). The final formulas are completely general yet compact and convenient.

I INSIDE GREEN'S FUNCTION

The wave equation for the electric field E (rrexp ( =) in an anisotropic dielectric gen-
erated by the nonlinear polarization PN (r')exp  —iwr) at the single frequency  is

mz . (u')' P'\I
Vx (VxE) —Kk(w) " E o (2.1
£ (s €, -
It has the Green's function solution
Elrw) - J Glr—r) PM(e)dr'e e, (2.2)
where
Fl(R) 4 L'\[‘(lk R) {/k (23)
I e e e T .
3
a (kw) (2m)
a (ko) = (dw)? (k1T —kk ] = ¥ (@), (2.4)

and ¥ (@) is the frequency dependent dielectnc tensor.

We have previously given  an asymptouc evaluation of Eq. (2.3) vahd for AR >> 1.
With a shight change of notation, the asvmptotic dyadic Green's function can be written

)
vae 4 b
. e’e
GR) =|=| ¥ ———r*®R) (25)
—
( h=12 COSD
where e® is the unit electric field vector associated with a given mode ¢ (e.g. extraordinary)
whose ray direction tis parallel 1o the direction of observation

t =R/R. (2.6)

and &% is the angle between the ray vector t and the wavevector k® associated with the above
ray direction. The scalar Green's function becomes
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g?(R) = ¢ —r——— / .7

where

b ST (2.8)
NI
and K® is the Gaussian curvature of the w (k) surface at k®, Equation (2.7) has been shown’
to agree precisely, in the uniaxial case, with the Green's function obtained without asymplotic
approximations. This Green's function disagrees by the factor /® with the intuitive notion that
for a given direction of observation one may use the Green's function for an isotropic medium
with the index of refraction appropriate to direction k?.

III. SCATTERED POWER INSIDE THE CRYSTAL

If Egs. (2.2), (25), (2.7) and (2.8) are used to calculate the electric field and if the
corresponding magneltic field, H = (VxE)/ (iwu, ), 1s also found, then the Poynting vector
for a given mode ¢ is found 10 be .

powt b2 )2

svﬂ - (3.1)
32 (cosd?)3
where n? is the index of refraction appropriate 10 wavevector k® and
b =et [ PM(riexp(—ik?® 1) dr. (3.2)
[
The ratio of the scatiered power inside the crystal,
scal | Q v . ’
_ Py = [S?]ridQ’ . (3.3)
(where d " is a solid angle of rays in r space) to the incident power,
Prs = A|8"| = "‘%“""lvl Zcosd” (3.4)
may be expressed as
’)W:AI
—— = RV, (3.5
PInC /A

ns

Here VS is the scattering volume accepted by the detector, A4, the cross-sectional area of the in-
cident beam inside the crystal and R, the scattering efficiency (the scattered power per unil in-
cident power, per unit solid angle, per unit path length), is given by

4
*
R =|2 ¥ e (3.6)
) RelnfcosdPeosd” (k*)IK®
The nonlinear phenomena that give rise to the scattering are included in the quantity
" 2

et PM) e N

[}
Qe I]En 2]

One striking way that the expression, Eq. (36), for the scattering efficiency differs from previ-
ous expressions is by its dependence on the Gaussian curvature K® of the ¢ branch of the
w(k) = w surface.
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IV. SOLID ANGLE-EXPANSION

The ratio of the solid angles subtended by the rays of a beam inside and outside a crystal
can be factored as
daj, _ day do, £

m n
. 4.1)
dQ (/Q‘/: (l.(lm"

The first factor describes the ratio of the solid angles in ray vector space and wavevector space
and is independent of the existence of a crystal surface. The second factor, describing the
change in wavevector solid angles, is completely determined by Snell’s law.

Since d 1} is readily computed in terms of the area of a patch d4* of the w (k) surface,
see Fig. 2, and d(),f, is related l() the same area by Gauss' rheorema egregium, see Fig. 3, we ob-

tain our previously quoted result/
dQ 1AL = K®(k?)?/coss® . (4.2)

mn

Across the surface of a crystal (nominally in the 3 or z direction) Snell’s law guarantees
the continuity of the transverse components of the propagation vector and, hence, of dk, dk,.
Since dk dk, is simply related o the patch area dA*, see Fig. 4, and hence to the solid angle
d Q4 see Fig 2, Snell’s law leads (o the relation ’

ol _ cosd®cosa 4.3)

dQ,, (n?)2 cosB

where B is the angle of arrival of the ray inside the crystal to the surface normal, 8% is the an-
gle between ray and wavevectors, as before, and a is the angle between the departure ray out-
side the crystal and the surface normal.

The product of Egs. (4.2) and (4.3) yields the desired solid angle expansion

d01dQ, = (w/c)2K®cosal/cosB . (4.49)
A slight rearrangement of this equation suggests that
dQ'cosp/K _ ‘ 4.5)

is an invariant for the pnssag,c of a beam from one material 1o another, a result we have recent-
ly proved quite generally.'®> Equation (4.4) is a special case of this invariance in which the
second medium is a vacuum with K, = (dw)?.

V. SOURCE YOLUME DEMAGNIFICATION

When the laser beam, scattered ray, surface normal, and departure ray outside the crystal
are all in one plane, it is possibie 10 derive the length /g along the laser beam in the crystal
from which radiation is admitted by a detector field stop of length /p. As seen from Fig. §,
these lengths are related by

{sind {
S -, RO .1
cosp cosp cosa
where ¢ is the scattering angle.
When the rays mentioned above are not all coplanar, Eq. (5.1) must be replaced by
L (5)

,l) Sinvscosa

where Nis the noncoplanarity correction, '
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N = 1/(cos¢ cosdp’ — cosB sing sind’) . (5.3)

Here ¢ is the angle of tilt between the plane defined by the unscatiered laser beam and the
normal o the input surface and the plane defined by the scattered ray and exit surface normal,
@ is the angle of tilt between the latter plane and the departure plane defined by the normal to
the exit surface and the scattered ray after it has left the crystal.

V1. SCATTERED POWER OUTSIDE THE CRYSTAL
To convert Eq. (3.5) 10 a power scatiering formula outside the crystal, we use

P."t\" e ’)‘:n.‘u/]vml / (6])
P:.'\]: = l)(l)l:‘t" T (62)

where 75" and 7% are entrance and exit transmission factors. If we note that VS(4 = g,
Egs. (4.4) and (5.2) can be combined 1o yield
2 N1 40 Dd
NI;d ) UK
td @, =2 ———— (6.3)
; ¢ sinfl ¢

to remind us that it is the detector solid angle. A de-

where we have written ¢Q ” for d €2,
7.14.15.16

1ailed derivation of this result has been given elsewhere.
If Egs. (6.1), (6.2) and (6.3) are combined with Eq. (3.5), we ohtain

Pot _ RTMTipd@ ONK® 'ﬂlz (6.4)
sinf¢ ¢
If Eq. (3.6) is used for the scattering efficiency, we obtain
i,‘_::'il ] ‘_'/_\.’{!’_‘ﬁ!,‘ I isir. e 0N (6.5)
ine ¢ sinflg 8 2n®ncosd Peoss”

Equation (6.5) incorporates all the geometric optics of the crystal surface. The mechanism of
the scattering is contained in J, whose evaluation will be discussed in the next section.

VII. APPLICATION TO LIGHT SCATTERING

To apply our final scattering equatton, Eq. (6.5), 10 Brillouin, Raman, or some other
scattering mechanism, it is necessary 1o evaluate /. of Eq. (3.7). which involves the nonlinear
optical properties of the scattering medium. Since the volume &'5 is large compared to all
relevant wavelengths, it is permissible to take the fimit as V'S approaches infinity. The
Weiner-Khinchin theorem'” applied 1o spatial variables rather than the time then permits Eq.
(3.7) 10 be rewrillen as an autocorrelation,

PP e [exp (—ik® 1) < PMO) PN () > s
2] JE" ()] ?

where the limits are infinite

With the understanding
E” (r1) = Hn"m ¢ rz"mw"“"l- (72)
PN (g.1) = —HP M fy) el &P (r)‘v"”'l. (13)

where w, is the input or laser frequency and wy is the Brillouin (or Raman) scatiered frequen-
Cy, we can write
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l’(fw' (r1) =€, Xg (1.0) E,',' (r,1) (7.4)

where the "susceptibility” x,, is space and time dependent because it is induced by the pho-
non field in Brillouin or Raman scattering. Equation (7.1) can then be simplified to

J =3 [ e =ikt 1] < N100) N (0) > dr (1.5)
where
N (1) = e? xg (r1) ef (7.6)

and we have used the plane-wave character exp (ik”-r) of the unscatiered wave E¥ (r).
If one is concerned with line shape, Eq. (7.5) can be decomposed by

J= [ Jw) do/2m (1.7
0

where
Jw) = %j] exp [ilw —w; )1l exp [=i(k® —k*)-r] < N®¥(0,0) N® (r,) > dr di, (7.8)

and only the positive frequency components of exp (—iw, 1) N®* (r,1) are included so that
J(w) vanishes for o < 0.

Brillouin Scattering

The first application of our modified Green's function, Eq. (2.7), with surface corrections
was made in connection with a detailed study of Brillouin scattering in calcite. Because the
formulas in this paper give a clear factorization of our Brillouin scattering formula' into intrin-
sic and geometric components, we indicate here the evaluation of J based on Eq. (7.5). To be
consistent with our definition ! of the photoelastic susceptibility as a relation between the posi-
tive frequency components of PN E” and u, 4 (the displacement gradient), we must write

Xab ™ 2Xabed Ye.d - (79

The averages, < u,, (0,0) “h"' (r./) >, can be evaluated by using the expansion of u, in
terms of normal coordinates, '
|

: b [ e falqr) + e %alqn | . (7.10)

h
i z:-lzpn...(q)

where q = k“ is the acoustic phonon propagation vector, p is the crystal density and Q is its
volume so that p£) = MN = mass per unil cell X number of cells. The unit displacement vec-
tor b is characteristic of the type of mode (e.g. transverse), and the sum over q also implies a
sum over types of modes. The mode amplitudes in the quantum mechanical case obey

< a'(qn) alqi,t) > =ndlqq’). (7.11)
< alq) a’q@) > = (i +1)8(qq) (7.12)

where 7 is the actual phonon excitation number that reduces (o
5 |
exp (Mw(q)/kT] —1
in the thermal equilibrium case. Averages of the type, Eq. (7.12), contribute to Stokes scatter-
ing, whereas those of type, Eq. (7.11), contribute to anti-Stokes scattering. Because we usually

have Nw<<kT7, both Stokes and anti-Stokes scattering have an intensity proportional
n= kT/hw. If we combine Egs. (7.5) and (7.9)-(7.13), we obtain

(7.13)
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J=EL G, G=|eb e xyu by @y |2 (7.14)
/)\' 1
where a, = ¢,/ |q| = &'/ |k | is a unit vector in the direction of phonon propagation and
vy = wk?)/kA (7.15)

is the sound velocity.

Equation (6.5) for the Stokes (or anti-Stokes) power scattering by a single type of acoustic
mode can be rewritten as

/ s e ¢ Ny df) @ TENUTeXI L TG (1.16)
i ¢ sinflg 82 n® p¥ cosd® cosdpvy
where G of Eq. (7.14) can also be expressed in terms of the Pockels tensor, p,,,, by means of
G = (1/4) (n® n")* (cosd® cosd”)? F, (717
F=| (Ild’ (1," Pkt by q IZ Y (7.18)

Here d” and d* are unit electric displacement vectors of the input and scattered beams, and w
is the Brillouin scattered frequency w # . Equation (7.16) was used in the analysis of our exper-
imental results '+ 19 except for the noncoplanarity factor, N, which was not needed then since all
experiments were conducted in a symmetry plane.

Raman Scattering

A detaifed analysis of Raman scattering by polaritons using the fluctuation-dissipation ap-
proach of Barker and Loudon® has been given.'* To evaluate Eq. (7.8) for J(w), needed to ob-
tain the line shape in Raman scattering, we express the nonlinear susceptibility defined in Eq.
(7.4) in the usual way,

x,; (1) =23, Al wt (i) + 2B, E (r0), (7.19)

In
as an ionic contribution associated with the displacement w* of mode u plus an electronic con-
tribution proportional to the electric field £(r,/). The factors of 2 assure conformity with
definitions in our previous work.'* Because field and displacement are correlated in polariton
motion, it was simpler to evaluate the correlations with the help of the fluctuation-dissipation

theorem. "6 If T, represents the response of < B> 1o a unit force at frequency w applied to
A, Eq. (1.8) yields 2°

Jw + wl) =ann(w) e e ef ef Im(J, | (7.20)
where

Jjap = L (AR AG T o+ By By Tyr + X (A8 "By T r + X By Aw T,.» (121)
uv " v

=X ()" qf B*(w) + B,
"

T, [2 Al qb B (w) + By,
+ (A8 AL B (w) + T (AF) "B () . (722
M H

The second form, Eq. (7.22), has used the equations of motion to express all response func-
tions in terms of the field-field response, i.c. the response of the electric field to a unit applied
external polarization, as
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T, = EJP = (@)

ch A

€, (& § ‘.‘
sl emaec: veoprieiiiy e 3 S e (7.23)
612 €,c08° 8% [(ck/w)? — (n®)?]

€,s klw) s

The first two terms in Lg (7.23) represent the tansverse modes while the third term
represents the longitudimal mode

- - - b
The mode w will generally obey an equation of the form 2!

m* [(w")? — w? — jw Y (w) | wt = g* E (7.24)

[

"

where m* 1s the effeciive mass, w” the effecuve (angular) frequency, y* (w) the effective fre-
quency dependent damping constant and ¢* 1s the ¢ component of the effective charge. The
response of w# 1o a unit applied force, needed in Eq. (7.22), 1s given by

|

B (w) ={m* [(w*)? w? w y* (w) | . (7.295)

We may combine Egs. (7.20) — (7.25) 10 obtin J(w + ob). If J(w + o) is inserted
in place of Jan Eq (6.5), the result, in view of Fqg. (7.7), s the ratio of the Raman scatlered
power per unit frequency iterval to the incident power, both computed outside the crystal.
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FIGURE CAPTIONS
A typical experimental setup for a Raman scattering experiment which displays the
expansion of the solid angle on emerging from the crystal. For a narrow laser
beam, the source volume V% = A/ from which scattered light is accepted is limited
by the input beam arca 4 and a length /¢ determined by the field stop.
The solid angle ¢ Q* associated with a patch of area dA* = dudv on the surface
w (k) =w of free-wave k vectors is given by dQ* =d4* cosd/k 2 where d4* cosb is
the component of the arca dA* normal 1o k, since d4* is normal to t or Ve (k).
Gauss's bump theorem relates the arca d4 = dudv of an element of surface to the
area d )" on the surface of a unit sphere subtended by the unit normals to dudv
that have been shifted in a parallel manner unul their origins coincide at O, the
sphere center. The solid angle d§2" = & dp where d) = du/p“ is the angle AUD
and do = dv/p, is the angle AVB where p, and p, are the principal radii of curva-
ture. Thus dQ" = K d4* where K = (p, p,) f is the Gaussian curvature and
dA* = dudv is the arca of the patch on the o (k) surface.
The patch d4* = dudv on the surface o (k) = w of Fig. 3 is plotted in a k| .ky.k;
coordinate system in which the three-direction is along the direction n of a unit
normal to the surface of the crystal. The projection of d4* onto the 1-2 plane
yields dk| dk, = dA* cosp because B is the angle between the normal t to the
patch (the ray direction) and the normal n to the surface.
Demagnification corrections when the arrival ray, departure ray, and surface normal
are all in one planc. The detector field stop (see Fig. 1) is represented in image
space by the knife edges, which accept a dimension /;, perpendicular to the beam.
The portion /g of the laser beam accepted is determined by the geometrical condi-
tions shown, independent of  the orientation of the virtual image
Ly IgsinBg/cosB = lfcosB = 1})/cosa.

This manuscript was produced on a computer driven phototvpesetter using th?
UNIX operating system developed at Bell Laboratories.
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